L’identificazione di anomalie è una tematica sempre più popolare che viene affrontata su più fronti. In generale, l’anomalia rappresenta un’entità, un evento o una caratteristica che non risulta conforme allo standard di normalità. Le anomalie sono un ostacolo, a volte anche pericoloso come per esempio nella sicurezza informatica, in cui l’intrusione di persone non fidate all’interno di sistemi informatici può diventare critico per un’azienda o un’istituzione; in industrie invece, le anomalie possono danneggiare la qualità dei prodotti, causando pesanti perdite in termini economici. Per questo motivo vengono ideate numerose tecniche che permettono di riconoscere le anomalie e ridurre i pericoli, i danni da esse causate o semplicemente per monitorare la qualità e gestire la manutenzione.
In un contesto di immagini, il riconoscimento di anomalie è un problema di Computer Vision. Esistono metodi di ricostruzione come gli Autoencoder o metodi generativi come le GAN che si occupano di risolvere tale problema. Tra i modelli che si basano sulle GAN, chiamati GAN-based, si distingue il modello Ganomaly: esso permette di rilevare se un’immagine sia anomala.
Sulla base di quest’ultimo, nascono Patch-Ganomaly, con cui si vuole migliorare il comportamento di Ganomaly, andando a localizzare la regione anomala di un’immagine, in termini di pixel, e migliorarne efficacia ed efficienza.
Mediante l’utilizzo di transfer learning basato sulla rete VGG16 è possibile ottenere un modello più preciso, TL-Ganomaly. Esso localizza la regione anomala in maniera precisa, in termini di pixel riconosciuti correttamente anomali.
In fase di post-processing inoltre è possibile dare un ulteriore apporto con il modello Conv-Processing, il quale apprende quale kernel convoluzionale riesca a migliorare la segmentazione delle anomalie in fase di post-processing.
Meetup di Deep Learning Italia