Data Analysis e Machine Learning per il gioco del calcio
AI/Machine Learning
• May 2022
Data Analysis e Machine Learning per il gioco del calcio
Explore more
About
Data Analysis e Machine Learning per il gioco del calcio
About
Partendo dall'analisi dei dati disponibili sulle partite di calcio, mostreremo quali siano gli strumenti e le tecniche per condurre un'indagine quantitativa per la realizzazione di una sistema che possa aiutare nel calcolo dei parametri di valutazione delle performance sul campo come l'indice di pericolosità offensiva (IPO) e gli Expected Goals (xG) e quali ne siano le possibili applicazioni.
Verranno analizzate e confrontate diverse tipologie di dati disponibili per questo tipo di problematiche.
Consulta il materiale degli speaker qui: https://drive.google.com/file/d/1rexEuN17s4FKiYSg6GA68-V8HUYmvLk2/view?usp=sharing
Language
Italian
Level
Intermediate
Length
94 minutes
Type
online conference
About the speakers
About the speakers
Francesca Tosi
Numerical Analyst •
K-Teq
Numerical Analyst and developer at K-Teq
I got a PhD in Applied Math in 2006.
I did research for some years in the field of computational fluid dynamics, working for research centers and international companies: ETH Zentrum (Zurich, CH); Exa Corporation (Burlington, MA/Usa); Ferrari (Italy); Ansys (Hannover, Germany).
After the CFD and HPC experience, back in Italy, I started to work as a freelance developer, mostly with java and in the area of compute and data intensive applications, Machine Learning and high volume data processing.
Luca Masini
Match Analysis Student •
FIGC - Coverciano
Senior Software Architect, born as game developer for C64 and Amiga, soon converted into a job.
Today I try to make digital what is inherently analogic: people's mind.
#matchanalysis #java #quarkus #microservices #kubernetes #kafka
Alberto Mancini
Developer •
K-Teq
I got a PhD in Applied Math and I indulged to my feeling for Software Development since the begin of the century when I started my adventure as freelance developer and consultant.
#ML #DataScience #web #java #flink #streams
Details
Language
Italian
Level
Intermediate
Length
94 minutes
Type
online conference